STUDY MODULE DESCRIPTION FORM					
Name of the module/subject		Code			
Power networks and power system control Field of study	Profile of study	1010314381010315992 Year /Semester			
Electrical Engineering	(general academic, practical) (brak)	4/8			
Elective path/specialty	Subject offered in:	Course (compulsory, elective)			
Networks and Electric Power Systems	Polish	obligatory			
Cycle of study:	Form of study (full-time,part-time)				
First-cycle studies	part-time				
No. of hours		No. of credits			
Lecture: 18 Classes: - Laboratory: 9	Project/seminars:	- 3			
Status of the course in the study program (Basic, major, other) (university-wide, from another field)					
(brak) (b		(brak)			
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		3 100%			
Technical sciences		3 100%			

Responsible for subject / lecturer:

dr inż. Ireneusz Grządzielski

email: email: ireneusz.grzadzielski@put.poznan.pl

tel. tel. 61 665 2635 (2392) Faculty of Electrical Engineering Piotrowo 3A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Possesses basic knowledge of the theory of electrical circuits, electrical machines, electric power engineering and electrical power generation
2	Skills	Has effective self-study ability in the domain of the chosen specialization, is able to integrate the knowledge acquired at the credited courses
3	Social competencies	Is aware of the need to develop his knowledge and competencies, is ready to undertake the cooperation and team work

Assumptions and objectives of the course:

Getting knowledge of the electric power system operation under steady operating conditions, methods of simulation computations of the power flows in the HV and EHV meshed networks, market-based power flow optimization, computations of the symmetrical and asymmetrical steady short-circuit conditions in the power system, practical use of the power flow computation program (PLANS) and short-circuit computation program (SCC) applied by the PSE Operator.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Has general knowledge of automatics and automatic control fundamentals know the criteria and principles of selection power protection automation devices [K_W22++]
- 2. Has knowledge of the electric power system fundamentals including structure and operation states of the electric power sectors: generation, transmission and distribution, knows basic rules of the operation and maintenance of the electric power system elements [K_W24 +++]
- 3. Has knowledge of the electric power engineering development trends in the EU integrated electric power system as well as rules of its safe operation $-[K_W25++]$

Qkille:

- $1. \ Can \ elaborate \ the \ engineer \ task \ completion?s \ documentation \ and \ describe \ the \ task?s \ results \ \ -[K_U07++]$
- 2. Can choose suitable technique and use measuring equipment (analog or digital) to measure the basic measurable magnitudes typical for engineering [K_U14+]
- 3. Can properly use and maintain electrical devices according to the general requirements and technical docu [K_U23+++]

Social competencies:

1. Is aware of the weight and understands different aspects and effects of the electric engineer?s activities including those related to the environmental impact and regarding the responsibility for the undertaken decisions - [K_K02++]

Faculty of Electrical Engineering

Assessment methods of study outcomes

Lectures:

- 1. Assesment of the knowledge and skills shown at the written and oral examinations,
- 2. Continuous assessment during courses (bonus for activity and perception quality).

Laboratory

- 1. Test of the knowledge necessary to deal with problems posed in the lab tasks.
- 2. Assessment of the knowledge and skills related to the lab task completion,
- 3. Assessment of the task report

Course description

Lectures: Transient states in the electric power system. Steady states in electric power system. Market-based optimization of the power system operation. Power flow calculations? role of the node potential method. Application of the Gauss and Newton? Raphson iteration technique to solve the non-linear node equations. Power flow optimization. Estimation of the power system conditions. Calculations of the steady short-circuit conditions in the electric power system? non-symmetrical short-circuit analysis using symmetrical component method, models of the system elements for symmetrical components.

Laboratory: involves experiments carried out using the power flow programs (PLANS) and short-circuit calculation programs (SCC) concerning topics presented in lectures.

Basic bibliography:

- 1. Kremens Z., Sobierajski M.: Analiza systemów elektroenergetycznych. WNT, Warszawa, 1996.
- 2. Kacejko P., Machowski J.: Zwarcia w systemach elektroenergetycznych. WNT, Warszawa, 2002.
- 3. Poradnik Inżyniera Elektryka . t.3. WNT, Warszawa 2005

Additional bibliography:

- 1. Cegielski M.: Sieci i systemy elektroenergetyczne. PWN, Warszawa, 1979.
- 2. Kończykowski S., Bursztyński J.: Zwarcia w układach elektroenergetycznych. WNT, Warszawa, 1965.

Result of average student's workload

Activity	Time (working hours)
1. participation in lecture courses	18
2. participation in labs	9
3. participation in discussions related to lectures	4
4. participation in discussions related to labs	4
5. preparation to labs	10
6. lab reports? elaboration	10
7. preparation to examination	20
8. taking an examination	3

Student's workload

Source of workload	hours	ECTS
Total workload	78	3
Contact hours	38	1
Practical activities	35	2